Površina trougla na kubnoj i primer urađenog zadatka

Oblik formule za površinu trougla na kubnoj-grafiku polinoma trećeg stepena i  primer urađenog zadatka

U članku:
https://gradiuinflaciji.wordpress.com/category/matematika/povrsina-trougla-na-krivama/ “ prilagodio sam oblik formule za površinu trougla metodu  koeficijenata jednačine prave na krivama.

Formula glasi:
P= (1/2)[ (x2 – x1 )n12 + (x3 – x2 )n23 + (x1 – x3 )n13 ]
; gde su x1,  x2 , x3  apscise temena ∆ ABC; trougao je dobijen presekom triju pravih, a n12, n23,  n13 su odsečci pomenutih pravih na y osi
Formula važi za bilo koji trougao, čija su temena tačke preseka pomenutih pravih.

Površina trougla na kubnoj:
U slučaju da presečne tačke pravih leže na grafiku kubne

F3(X) = a0x3 + a1x2   a2x  + a2 ,
 površina trougla će biti:

Zadatak:
-101. Data je kubna:

Na grafiku kubne postavljen je ∆ ABC. Temena trougla imaju  apscise:

Odrediti površinu trougla.

Na slici ispod je dat grafik kubne i tražena površina trogla.

Izrada:
Potrebne formule:

-Date, poznate vrednosti:

Nastavak zadatka videti u dokumentu:
Površina trougla na kubnoj i primer urađenog zadatka

Pomoćna sredstva:
-Korišćen program“GeoGebra“.


Autor,
Srdačan pozdrav i dobro zdravlje,
dipl. maš. inž. Mladen Popović

 

Advertisements